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SUMMARY

A multidomain method for the solution of elliptic CFD problems with an ADI scheme is described. Two methods
of treatment of internal boundary conditions for ADI functions are discussed, namely an explicit and a semi-
implicit method. Stability conditions for the proposed methods are derived theoretically. The semi-implicit
scheme is more stable than the explicit scheme, leading to improved numerical ef®ciency for multidomain
computations. Numerical computations for a linear convection±diffusion equation, for buoyancy-driven
recirculating ¯ow in a square cavity and for turbulent ¯ow in a square duct con®rmed the theoretical results.
Computer runs of the multidomain code in a distributed memory multiprocessor system were successful and
ef®cient and produced reliable results. # 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The development of multidomain schemes is important for parallel computing on distributed memory

machines, for problems with complicated geometry and for the reduction of round-off errors on ®ne

grids.1

Explicit schemes are easy to implement in multidomain applications. However, such schemes

suffer from a short time step owing to stability limitation. Implicit schemes have less restrictive

stability limitations. For instance, the two-dimensional ADI scheme considered in this paper is

absolutely stable for a linear equation. On the other hand, implicit schemes are characterized by

global spatial data, dependences and a requirement to solve large-bandwidth linear systems. In the

present work some ways to apply multidomain techniques to the Douglas alternating direction

implicit (ADI) scheme are studied. In an implicit scheme it is usually required to solve a linearized

system of equations for every time step. The coef®cient matrix of this system is usually pentadiagonal

and very large. In the ADI method this large matrix is split into many tridiagonal matrices which are

much easier to solve. However, the standard tridiagonal solver is recursive. Therefore it is dif®cult to

implement the algorithm for tridiagonal matrices which are arti®cially split owing to the need to solve

the problem over subdomains. This problem is resolved by algorithmic changes reducing spatial data

dependences and `far-®eld' interaction between subdomains. These changes may cause certain
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degradation of the numerical ef®ciency and in some cases even loss of stability. In this paper we

examine some possible methods to de®ne arti®cial boundary conditions at subdomain interfaces and

the in¯uence of these methods on the stability and numerical ef®ciency of the proposed schemes. The

problem of parallelization of such schemes and the loss of ef®ciency due to communication between

processors are discussed elsewhere.2

1.1. Literature Survey

Various authors have studied the parallelization of ADI schemes. For instance, Naik et al.3 used the

Beam±Warming ADI scheme to solve the 3D Euler and thin layer equations in the frame of a

multidomain approach. They overcame the recursiveness of the Thomas algorithm for the solution of

tridiagonal systems of equations by sending the necessary information (the coef®cients of the Thomas

algorithm on the forward step and the values of the solution vector on the backward step) to

neighbouring subdomains after every line or row of the ADI sweeps. This procedure, referred to as

the `pipeline Thomas algorithm', does not need any internal interfacial boundary conditions.

However, this leads to a penalty when the method is parallelized, as each processor has to wait for all

the processors behind it (in the ®rst step of the Thomas algorithm) and for all the processors ahead of

it (in the second step of the Thomas algorithm) before the next iteration can start.

Rosenfeld and Yassour4 de®ne different sets of subdomains for each stage of the ADI method.

Each subdomain stretches between two physical boundaries of the problem. This eliminates the need

for speci®c non-physical boundary conditions at the subdomain interfaces with the accompanying

numerical dif®culties. However, this method is unsuitable for distributed memory machines owing to

the necessity to exchange the computational matrices between processors at each stage of an ADI

method.

A very common approach to the problem of semi-implicit or implicit multidomain solution

methods is to compute the internal boundary values explicitly as was done by Schreck and Peric,5

who used subdomain partitioning in a SIMPLE-based Navier±Stokes solver. They parallelized the

SIMPLER solver by straightforward utilization of internal boundary values for the governing

variables from the previous iteration. Internal boundary values of the governing variables were

exchanged after each sweep. This approach was used also by Tsai6.

Although such an approach appears suitable for a semi-implicit scheme such as SIMPLE, Braten7

has shown that the convergence rate of this method deteriorates in comparison with its single-domain

version, because internal boundary values for the governing variables are updated explicitly.

According to Braten, any improvement in the convergence rate obtained by increasing the number of

internal sweeps is more than offset by the longer time requirement per iteration.

A somewhat different approach was used by Jenssen,8 who carried out implicit multiblock

computations for a large number of blocks using explicit coupling between the blocks. This method is

very sensitive to the block partitioning. Jenssen computed a spectral radius for the characteristic

matrix for the one-dimensional scalar linear convection±diffusion equation with constant coef®cients

for a two-level upwind scheme. In the multiblock case the spectral radius is close to unity for a mesh

Reynolds number less than one. It was concluded theoretically and by computer runs that the Navier±

Stokes equations are not decoupled in regions with strong parabolic dominance such as boundary

layers.

Degani and Marcus9 proposed improving the stability of domain decomposition schemes by a

choice of an optimal number of overlapping grid points in the frame of an explicit approach to the

internal boundary values. They obtained (by computer experiments) the critical Courant number for

the inception of instability as a function of the number of overlapping segments for the MacCormack

explicit and Beam±Warming implicit methods applied to the Euler equations.

548 A. POVITSKY AND M. WOLFSHTEIN

INT. J. NUMER. METH. FLUIDS, VOL 25: 547±566 (1997) # 1997 by John Wiley & Sons, Ltd.



Tysinger and Caughey10 used an ADI scheme to solve the Navier±Stokes equations for viscous

compressible subsonic ¯ow on a distributed system of IBM RISC workstations. The boundary values

on subdomain interfaces were treated in a manner consistent with the theory of characteristics. No

interblock communication is required for such a treatment. Convergence rates were nearly the same

for the single- and multidomain schemes. However, only ®ve subdomains were used in this research.

The authors comment that in general it is possible to construct implicit interface boundaries, but

further communications and synchronization costs would be incurred.

Thus it appears that an estimation of the internal boundary conditions on subdomain boundaries is

the critical step for the implementation of implicit numerical schemes for multidomain computations.

1.2. Purpose and scope of present contribution

The aim of this work is to ®nd an effective method for the determination of arti®cial boundary

values on the internal interfacial boundaries between the subdomains for the Douglas ADI method

with a second-order ®nite difference scheme. The algorithm proposed here differs from that of Naik

et al.3 in that the calculations in each subdomain must wait for their neighbours only and need not

wait for completion of each step of the solution in all subdomains. A single-point overlap is used in

order to minimize the communication and computation penalty for parallel implementation.

In the present paper we attempt to preserve the stability features of the basic single-block implicit

scheme. A theoretical prediction of the stability of multidomain schemes for the convection±diffusion

equations is derived and tested numerically.

2. MATHEMATICAL FORMULATION

Consider a partial differential equation of the form

@f
@t
� Lf� S; �1�

where t is the time, L�Ax�Ay is a two-dimensional elliptic differential operator and S is a source

term.

The Douglas ADI method (sometimes referred to as the Samarskii±Andreev method) is used here

following Isenberg and de Vahl Davis:11

I ÿ Dt

2
Ax

� �
f * � �Ax � Ay�fn � Sn; �2�

I ÿ Dt

2
Ay

� �
f ** � f *; �3�

fn�1 � fn � Dtf **: �4�
The boundary condition for the auxiliary functions f * and f ** is easily obtained from the above

de®nition. In particular, in a steady state these boundary values are equal to zero.

3. MULTIDOMAIN SCHEME

3.1. Domain partitioning

In the current work a rectangular domain was divided regularly into rectangular subdomains. Thus

each subdomain has a maximum of two neighbours for a one-dimensional partitioning and four
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neighbours for a two-dimensional partitioning. A single-boundary-point overlap is used on all

internal domain boundaries (see Figure 1). For instance, the points in the Nth column in Figure 1 are

internal points of the ®rst subdomain. The points in the (N� 1)th column are boundary points of the

®rst subdomain. In turn, points belonging to the (N� 1)th column are internal points of the second

subdomain and points belonging to the Nth column are boundary points of the second subdomain.

Thus the ®rst point in a given domain is also the boundary point in the previous domain (except for

the points on the physical boundaries). After each time step the values of the governing variables and

velocities on subdomain interfaces are exchanged between subdomains. Additionally one should

specify the internal boundary conditions for the ADI functions. A fully explicit and a semiimplicit

approximation of the internal boundary conditions for the ADI functions are described below.

3.2. Fully explicit scheme

For all internal boundaries the auxiliary functions at the (i� 1)th step were taken from the values of

the governing variables at the two previous steps:

fb*
i�1 � R�fi

b ÿ fiÿ1
b �=Dt; �5�

where 04R4 1 is a damping coef®cient. In the fully explicit scheme the boundary values of the

auxiliary ADI functions are not exchanged between subdomains.

3.3. Semi-implicit scheme

The internal boundary values of the auxiliary functions at the front of the subdomain (relative to

the direction of integration) were obtained by the fully explicit scheme described above. The internal

boundary values at the back were obtained from the ADI solution for the previous domain at the same

time step. When this scheme is incorporated in a parallel solver, these internal boundary values are

transferred from the processor corresponding to the previous domain via the communication network.

The scheme is called `semi-implicit' because the values at the back of the subdomain are calculated

at the (i� 1)th step by the implicit ADI method. The main advantage of the semi-implicit scheme is

its improved stability (see below). Its drawback for parallel computer application is additional

Figure 1. Subdomains overlap
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communication between processors and processor idle time, because the boundary values of the

auxiliary ADI functions are required for computations in the subdomain ahead of the current

subdomain.

4. STABILITY ANALYSIS

The von Neumann stability analysis is used here. The application of the method to internal points is

well known. However, we recapitulate it here as a starting point for its extension to the treatment of

the internal boundaries.

4.1. Internal points

For a two-dimensional scalar transport equation the operators Ax and Ay of the ADI equations are

written in the second-order non-staggered ®nite difference form

Axf
n � Dtÿ1 Sx�fn

Nÿ1;M ÿ 2fn
N ;M � fn

N�1;M � ÿ
Cx

2
�fn

N�1;M ÿ fn
Nÿ1;M �

� �
; �6�

Ayf
n � Dtÿ1 Sy�fn

N ;Mÿ1 ÿ 2fn
N ;M � fn

N ;M�1� ÿ
Cy

2
�fn

N ;M�1 ÿ fn
N ;Mÿ1�

� �
; �7�

where

Sx � nDt=Dx2; Sy � nDt=Dy2; Cx � UDt=Dx; Cy � VDt=Dy: �8�
It may be noted that C is the Courant number and S (often referred to as the `stability ratio') is

indicative of the stability of parabolic systems. C=S is the cell Reynolds number.

The error is de®ned as the difference between the exact and the numerical solution:

en � fexact ÿ fn: �9�
The variable fexact satis®es the PDEs. As the equations are linearized about the exact solution, the

®nite difference equations govern e as well, but with zero boundary conditions. Therefore the error e
(around the known solution) and the ADI functions for the error, f * and f **, may be expanded into

Fourier series as

e � Gne�yxN�yyM �i; �10�

f * � Pe�yxN�yyM �i; �11�

f ** � Qe�yxN�yyM �i; �12�
where G, P and Q are ampli®cation factors, N and M are the numbers of mesh points in the x- and y-

direction respectively and yx and yy are the phases, which are the same for both the ADI functions and

the error. It is now possible to substitute these de®nitions in the ®nite difference expressions for Axf
and Ayf in the ADI formulae (2) and (3) to get equations for the ampli®cation factors P, Q and G:

�1� X=2�P � ÿDtÿ1�X � Y �Gn; �13�

�1� Y=2�Q � P; �14�

Gn�1 � Gn � QDt; �15�
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where

X � 4Sx sin2 yx

2

� �
� Cx sin�yx�i; Y � 4Sy sin2

yy

2

� �
� Cy sin�yy�i: �16�

The ®nal expression for the ampli®cation factor G is

G � 1ÿ X � Y

�1� X=2��1� Y=2� : �17�

The absolute stability condition is jGj> 1 for every X and Y. It is possible to show12 that this

condition is satis®ed and the scheme is unconditionally stable for Sx, Sy 6� 0. It should be noted that

this proof is for a single linear equation and not for the non-linear system of the Navier±Stokes

equations.

4.2. Explicit scheme

The stability analysis for the internal boundaries follows that of Trapp and Ramshaw,13 who

employed a similar technique for the real boundaries of their computational domain. The analysis is

based on the von Neumann analysis of the ®nite difference equations in the neighbourhood of the

internal boundary points, A local stability analysis at a given mesh point is performed by estimating

the ampli®cation factor from the relation between the values of the error at the neighbouring mesh

points to which the given point is directly coupled by the ®nite difference scheme.13 The obtained

expressions for the ampli®cation factor are valid for all Ax and Ay. The detailed numerical

computations of the stability region will be performed for the case Ax�Ay (corresponding to Sx� Sy

and Cx�Cy). Further, the stability regions for different Ay will be computed. The partial case Ay� 0

will be considered for one-dimensional applications.

To illustrate the method, we consider an internal boundary perpendicular to the x-direction. The

RHS of the ®rst ADI equation becomes

I ÿ Dt

2
Ax

� �
f * � P 1� Sx ÿ

Sx

2
� Cx

4

� �
eÿyxi

� �
� Dtÿ1 Cx

4
ÿ Sx

2

� �
Gnÿ1R�G ÿ 1�eyxi: �18�

Substitution of this expression into the ®rst ADI equation (2) leads to a quadratic equation for the

ampli®cation factor G:

AG2 � BG � C � 0; �19�
where

A � 1� Y

2

� �
1� Sx ÿ

Sx

2
� Cx

4

� �
eÿyxi

� �
;

B � ÿ 1� Y

2

� �
1� Sx ÿ

Sx

2
� Cx

4

� �
eÿyxi

� �
ÿ X � Y � R

Cx

4
ÿ Sx

2

� �
eyxi

� �� �
; �20�

C � ÿR
Cx

4
ÿ Sx

2

� �
eyxi:

In a similar way it is possible to formulate the quadratic equation for the ampli®cation factor for an

internal boundary perpendicular to the y-direction. The resulting equation (19) with coef®cients (20)

should be solved for G in order to ®nd the condition jGj < 1. This was done numerically and the

results are shown in Figure 2, where the boundaries of the stability region are depicted in a cell
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Reynolds number Re�C=S versus S plane for large S in Figure 2a and in a C versus S plane for small

S in Figure 2b. The computations were performed for Ax�Ay. The stability region is found between

these boundaries. The in¯uence of the operator Ay on the stability region for an internal boundary

perpendicular to the x-direction is presented in Figure 3a. It may be concluded that this in¯uence is

minor. To complete the picture, we explored the stability limits for very high S. This can be done

analytically (see Appendix I). The results show that the condition jGj4 1 is satis®ed only for Re� 2.

Thus a nearly symmetrical (about Re� 2) stability region is obtained, asymptotically narrowing

towards an in®nite S.

The coef®cients of the quadratic equation for the ampli®cation factor for corner points are

presented in Appendix I. The stability of corner points is shown in Figure 2 and it does not alter the

stability region considerably.

4.3. Semi-implicit scheme

For the semi-implicit scheme (an internal boundary perpendicular to the x-direction is considered)

two ampli®cation factors for the ADI function f * should be considered, namely P1 for the last point

of the current subdomain and P2 for the ®rst point of the next subdomain.

Figure 2. Stability region for explicit scheme: a, large S-values in C=S versus S plane; b, small and moderate S-values in C
versus S plane
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Commonly in this case the ampli®cation factors for the two sides of the boundary differ. In order to

check the stability of the scheme, we assume that the error function e is represented by a Fourier

series

e � G�n�e�yxN�yyM �i; �21�

where n is the number of the time step and G(n) is equal to G1(n) for the explicit (rear) side of the

boundary and G2(n) for the implicit (front) side of the boundary. The factors P1 and P2 are computed

as

P1 � ÿDtÿ1

�
�X � Y �G1�n� � R

�
ÿ Sx

2
� Cx

4

�
eyxi

�
ÿ
�

Sx ÿ
Cx

2

�
�G2�n� ÿ G1�n��eyxi

1� Sx ÿ
�

Sx

2
� Cx

4

�
eÿyxi

; �22�

P2 � ÿDtÿ1

�
�X � Y �G2�n� � P1

�
Sx

2
� Cx

4

�
eÿyxi

�
ÿ
�

Sx �
Cx

2

�
�G2�n� ÿ G1�n��eÿyxi

1� Sx ÿ
�

Sx

2
ÿ Cx

4

�
eyxi

: �23�

Figure 3. Stability regions for various operators Ay: a, explicit scheme; b, semi-implicit scheme
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The next-step values of the functions G1 and G2 are calculated by the expressions

G1;2�n� 1� � G1;2�n� �
P1;2

�1� Y=2�Dt
: �24�

Results of numerical parametric computations (22)±(24) for G1 and G2 are shown in Figure 4 for

the one-dimensional case (Ay� 0). Computational parameters are presented in the Table I.

The initial ampli®cation factors G1(1) and G2(1) are complex numbers with jG1�1�j � jG2�1�j � 1

and alternating phase angle. Numerical calculations show that the functions G1 and G2 approach each

other after a large number of iterations. This number of iterations depends on the sign and value of

Re, the stability ratio S and the damping coef®cient R. Therefore it is possible to analyse the scheme

under the assumption G1�G2�Gn. The analysis follows a pattern very similar to that of the previous

subsection. The coef®cients of the resulting quadratic equation for the ampli®cation factor G at the

internal boundary are

A � 1� Y

2

� �
1� Sx ÿ

Sx

2
� Cx

4

� �
eÿyxi

� �
1� Sx ÿ

Sx

2
ÿ Cx

4

� �
eyxi

� �
;

C � ÿR
Cx

4
ÿ Sx

2

� �
Sx

2
� Cx

4

� �
; B � X � Y ÿ �A� C�: �25�

Figure 4. Ampli®cation factors versus number of iterations for semi-implicit scheme
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The quadratic equation was solved numerically to give complex values of the ampli®cation factor.

The boundaries of the regions of stability are shown in Figure 5 in the C=S versus S plane. The

coef®cients (25) of the quadratic equation (19) for the ampli®cation factor are symmetrical relative to

C. Therefore the stability regions are presented only for positive C-values. Figure 5a depicts the

stability region for large S, while Figure 5b enlarges the small-S region. It may be seen that the

scheme is stable (G! 0 for large n) for cell Reynolds numbers jRej � 2 and Re� 0 regardless of the

stability ratio S and the damping coef®cient R. This is con®rmed by previous computations of G1,2

Table I. Parameters for computation of ampli®cation factors G1,2

Case Re Stability ratio S Damping coef®cient R Convergence

a 1 10 0 �
b 1 10 0�4 ÿ
c ÿ1 10 0 �
d ÿ1 10 0�4 ÿ
e 0 5 0 �
f 0 5 1 �

Figure 5. Stability region for semi-implicit scheme: a, large S-values in C=S versus S plane; b, small-values S in C versus S
plane
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(see Figures 4e and 4f). For S> 6 and R� 1 an inner unstable region appears inside the stable region.

Still the stability region is broader than in the explicit case for all values of S (compare Figures 2 and

5). Fortunately, for R� 0 the semi-implicit scheme is stable for all jRej4 2 regardless of S. The same

results are obtained by computations of G1,2 for jRej � 1 and S� 10 (see Figures 4a and 4d).

For s! 0 the limiting C-value tends to some ®nite positive number that depends on the damping

coef®cient and the operator Ay (see Figure 3b). However for the explicit scheme this limiting C-value

tends to zero (see Figures 2b, 3a and 7). The in¯uence of the operator Ay on the stability properties of

the semi-implicit scheme is presented in Figure 3b. Again, as in the explicit case, this in¯uence is not

very noticeable. An analytical investigation of the stability for small and large S is given in Appendix

II.

The advantages of the semi-implicit scheme over the explicit scheme can be summarized as

follows: (i) the stability condition is symmetrical for positive and negative C-values; (ii) the region of

stability is suf®ciently larger; (iii) for R� 0 and Sx!? the scheme is stable for jCx=Sxj4 2; (iv) for

Sx! 0 the scheme is conditionally stable.

The disadvantages of the semi-implicit scheme for implementation on parallel computers are

additional communication time for transfer of the boundary values of the auxiliary ADI functions and

local dependence delay of processors.

5. NUMERICAL SOLUTION OF THE SAMPLE PROBLEMS

5.1. One-dimensional convection±diffusion equation

A linear 1D convection±diffusion equation is examined as an example for our stability

considerations in the case Ay� 0:

@U

@t
� ÿa

@U

@x
� n

@2U

@x2
; �26�

with boundary conditions U(0)� 0, U(1)� 1 and constant a.

This equation has the analytical solution12

U �x� � exp�ax=n� ÿ 1

exp�a=n� ÿ 1
: �27�

The computer runs were performed for a stability ratio S� 20 and Reynolds numbers Re� 0�1, 1

and 2. The internal boundary is located at x� 0�8 (the point of maximal discrepancy between the

numerical and analytical solutions for the single-domain case). The semi-implicit scheme is utilized

for boundary values of the ADI function. The numerical errors versus the number of iterations are

shown for the single-domain case (full lines in Figure 6) and for the two-domain computations with

internal boundary (broken lines in Figure 6).

The instability of the fully explicit scheme (Section 3.2) is shown in Figure 6 (curve 4), where the

error is drastically increased. The semi-implicit scheme is stable everywhere in this set of

computations. The rate of decrease of the discrepancy is close to that of the single-domain case. For

the speci®c case Re� 2 the convergence graphs nearly coincide. Even for a case of instability of the

internal boundary (jRej � 1; R� 1) the computations are stable as a result of the stability of the

internal points.
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5.2. Buoyancy-driven ¯ow in a square cavity

The problem is as follows. The horizontal walls are adiabatic and the vertical walls are at non-

dimensional temperatures of zero and one. The Boussinesq approximation for buoyancy forces is

used. The governing equations in non-dimensional form are:

@�Ux�
@x
� @�Vx�

@y
� PrH2x� RaPr

@T

@x
; �28�

@�UT �
@x
� @�VT �

@y
� PrH2T ; �29�

0 � H2c� x; �30�

U � @c
@y
; V � ÿ @c

@x
: �31�

No-slip impermeable solid walls are assumed. Boundary conditions for the vorticity at the walls

were approximated by the Woods second-order formula14

xB �
3�cB� ÿ cB�

Dx2
ÿ 0�5xB�; �32�

where subscripts B and B� represent a point on the wall and a point adjacent to the wall respectively.

Equations (28)±(30) are modi®ed to allow the use of the false transient method by adding the term

aÿ1
c @f=@t on the left-hand side of each equation, where f stands for any of the variables (x, T or c).

The coef®cient af has to be chosen on the basis of past experience or by trial and error.15,16 The false

transient coef®cients used are the same as those used by Behnia et al.,16 namely, for Ra� 104: ac� 1,

ax� 0�1, aT� 1 and for Ra� 106: af� 1, ac� 0�01, aT� 0�25.

Solutions for Ra� 104 and 106 are presented using the semi-implicit and explicit methods of

internal boundary treatment (Table II). In both cases the results of the present computations agree

with the benchmark solution of de Vahl Davis.15

Figure 6. Convergence history for linear convection±diffusion equation: full lines, serial case; broken lines, computations with
internal boundary
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One can see from Table II that the required number of iterations for convergence depends on the

value of the stability ratio S. The maximum possible value of S depends on the chosen method of

internal boundary treatment.

For the explicit method the required numbers of iterations were signi®cantly higher than for the

single-domain case. The maximal S-values for the explicit method were S� 1�5 for R� 0 and S� 1

for R� 1. The theoretical stability analysis (see Section 4.2) for the governing equations (28)±(30)

shows that for a Poisson equation (Cx�Cy� 0) the maximal S-values are S� 2 for R� 0 and S� 1

for R� 1 (see Figure 2b). For the stability analysis for the transport equations (28) and (29) (in the

frame of the approximate equality Ax�Ay) the C-values were computed using the maximal velocity

in the cavity and the Sf-values were obtained by multiplication of the value of S for the Poisson

equation by the value of af. These (Sf, C) pairs are found in the stable region in the C versus S plane.

The discrepancy between the theoretical and numerical values of the maximal S for a mesh of

1216121 (S� 1�5 and 2 respectively) is caused by the basic assumption of the von Neumann

stability analysis that e is small (see Section 4.1). Actually for the initial iterations this assumption is

not valid. Using S� 2 at the late stages of the solution leads to convergence. This con®rms our

theoretical stability considerations for the case.

For the semi-implicit scheme the same S-values as in the single-domain case were utilized for

stable computations (see Table II). The best numerical ef®ciency (measured in terms of the number of

iterations) is reached for the damping coef®cient R� 1. For Ra� 104 the numerical ef®ciency is the

same as that obtained in the single-domain case. For Ra� 106 (complicated ¯ow with some

recirculation regions and thin boundary layers) the observed deterioration of convergence was less

than 6%.

5.3. Turbulent duct ¯ow

In this case an incompressible turbulent ¯ow ®eld in a rectangular duct is considered. Such ¯ows

are characterized by the major axial direction of the ¯ow. Briley17 suggested parabolizing the

Navier±Stokes equations in order to allow solution by marching in the z-direction as follows:

@F

@z
� 1

ReW

@2F

@x2
� @

2F

@y2

� �
ÿ U

W

@F

@x
ÿ V

W

@F

@y
� S; �33�

Table II. Numerical ef®ciencies of semi-implicit (SI) and explicit (E) methods of ADI function computation at
subdomain boundaries

Ra Grid size Number of
subdomains

Stability
ratio

Number of
iterations

Internal
boundary conditions

Damping
coef®cient

104 81681 1 3 1554
104 81681 363 3 1554 SI 1
104 81681 363 3 1689 SI 0
104 81681 363 2 2716 E 0
104 81681 363 1 9327 E 1
104 1216121 1 3 3505
104 1216121 363 3 3514 SI 1
104 1216121 363 3 3722 SI 0
104 1216121 363 1�5 7440 E 0
104 1216121 363 1 11034 E 1
106 81681 1 12 1426
106 81681 363 12 1511 SI 1
106 81681 363 6 2550 SI 0
106 81681 363 2 7615 E 0
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where Re�W0D=n is the Reynolds number, D is the duct hydraulic diameter, W0 is the mean inlet

velocity, F represents U, V and W and S is the corresponding pressure gradient.

The streamwise pressure gradient is computed from the integral mass conservation condition17�
A

W dxdy � _m

r
; �34�

where _m is the mass ¯ow rate through the duct.

The Reynolds stress model of Naot et al.18 was employed. The Reynolds stress equations can be

written (for this case) in the following general form

@Q

@z
� 1

W

@

@x
G
@Q

@x

� �
� @

@y
G
@Q

@y

� �� �
ÿ U

W

@Q

@x
ÿ V

W

@Q

@y
� AQ; �35�

where Q � �k; e; d; huwi; hvwi; huvi�T; k � 0�5�u2 � v2 � w2� is the turbulent energy,

e� u2 � v2; d � v2 ÿ u2 and A is a rectangular matrix such that AQ represents the source terms for

the Reynolds stresses (see Reference 18 for details). The apparent turbulent diffusivity is given by

G � Cmlmk1=2; �36�
where Cm is a numerical constant (Cm� 0�341) and lm is the transport length scale de®ned as

lm � n if 04 n4 0�35,

0�135 otherwise,

�
�37�

with n being the local normal distance from the wall.

The staggered grid used enables the representation of most of the terms in the differential equations

(33)±(35) by central second-order ®nite difference approximation.19

The transverse momentum equations (for U and V) are solved in two stages. In the ®rst stage the

transverse pressure gradients are approximated by their previous values and `predicted' lateral

velocities (UP and VP) are computed. Then a potential velocity correction is computed via a solution

of a Poisson equation for the correction potential:

@2f
@x2
� @

2f
@y2
� S; �38�

where S� 7H ~V P.

The Poisson equation for the potential f has to be solved at every step in the z-direction. It is

worthwhile noting that the equations for the Reynolds stresses (35) are different from the momentum

equations owing to the presence of the coef®cient matrix A. The matrix A is dense and its terms are

rather large. Thus the term AQ often becomes the dominant term on the right-hand side of equations

(35). A modi®ed three-step Douglas ADI scheme19 is utilized as follows:

I ÿ hz

2
A

� �
F* � �A� Ax � Ay�Fn;

I ÿ hz

2
Ax

� �
F** � F*;

I ÿ hz

2
Ay

� �
F*** � F*;

Fn�1 � Fn � hzF***: �39�
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The solution of the ®rst step is done by the standard Gauss elimination method for the 666 matrix

A for each node. The second and third steps are performed using the Thomas algorithm for each line

or row.

The governing ®elds obtained from multidomain runs on an MIMD parallel computer are the same

as for single-domain computations.19 The minimum and maximum values of the governing variables

are presented in Table III, for Re� 415,000.

The stability analysis presented in Section 4 is applicable to the parabolized ¯ow by de®ning fexact

in equation (9) as the value of any of the variables U, V, W and Q in the fully developed ¯ow or the

converged solution for the Poisson equation for the potential f; n is the number of the axial step or

the number of the internal iteration for the Poisson equation. The parameters S and C for the

momentum equations are

S � hz=h
2
xReW ; Cx � Uhz=Whx; Cy � Vhz=Why: �40�

Numerical experiments for the single-domain case and square grids suggest that the maximal value

of hz is equal to 640h2
x (for example, for a grid of 81681 points, hz� 0�1). Further increase in hz leads

to divergence owing to the non-linearity of the problem.

Using the values from Table III, it is possible to calculate S and C by (40) as functions of the axial

velocity W (where Wmax4W4Wmin). The values of Ccrit (corresponding to Umax and Umin) versus S

are shown in Figure 7 (segments A1B1 and A2B2). For the case considered, these values of Ccrit versus

S are inside the stability region for the explicit scheme of internal boundary treatment. Thus one can

use the explicit scheme for multidomain solution of the momentum equations.

For the Reynolds stress equations the value of S is determined by

S � hzG=h
2
xW ; �41�

where G is computed by (36). An estimate of G shows that S> 2. Owing to the recirculatory nature of

the problem, there are internal boundaries with negative values of U or V. It was already pointed out

that the explicit scheme is unstable for S> 2 and negative C-values. An attempt to use the explicit

scheme for the Reynolds stress equations actually led to divergence. Thus the semi-implicit scheme is

required for the Reynolds stress equations.

For the Poisson equation the Courant number C is zero and S� ht=h
2
x . Numerical experiments for

the single-domain case have shown that ht� 1�3h2
x yields the minimal number of iterations for the

Poisson equation. The maximal value of the damping coef®cient R ensuring that the explicit scheme

for the internal boundaries is still stable was found to be R� 0�25 and was utilized in the multidomain

parallel computations.

Some results of parallel computer runs are presented in Table IV for a 2006200 grid for runs on a

MEIKO parallel computer. More detailed results of the parallel computations are given in Reference

2.

The reason for `over speed-up' for the 262 partitioning is that the solution of the Poisson equation

requires many more iterations in the single-domain case than in the parallel case. This is probably

caused by round-off errors due to the application of the Thomas algorithm to large matrices.

Table III. Minimum and maximum values of governing variables

W U6102 V6102 k6102 e6102 d6102 huwi6102 huvi6103

Max. 1�155 1�629 1�629 1�481 0�839 0�297 0�292 0�106
Min. 0�584 ÿ1�629 ÿ1�629 0�559 0�424 ÿ0�297 ÿ0�292 ÿ0�106
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5. CONCLUSIONS

A multidomain method for the solution of elliptic CFD problems with an ADI scheme is described.

An advantage of the method is that calculations in each subdomain must wait for their neigbours only

and need not wait for completion of each step of the solution. Two methods of treatment of internal

boundary conditions for ADI functions are proposed, namely an explicit and a semi-implicit methods.

A theoretical method for determining the stability conditions (in terms of the stability ratio S and the

Courant number C) is developed and con®rmed by computations for various test cases.

The stability region of the semi-implicit scheme is signi®cantly broader than that of the explicit

scheme because: (i) the stability condition is symmetrical for positive and negative Courant number

values; (ii) the region of stability is suf®ciently larger; (iii) for zero damping coef®cient (R� 0) and

for the stability number S!? the scheme is stable for jC=Sj4 2; (iv) for S! 0 the scheme is stable

for jCj4Ccrit.

It is shown that using the semi-implicit scheme makes it possible to utilize the same values of S as

in the single-domain computations. The number of iterations of the semi-implicit method is close to

that required in a single-domain computation.

Figure 7. Stability region of momentum equations for turbulent duct ¯ow. Segments A1B1 and A2B2 show C versus S

Table IV. Computation times for 2006200 grid and
various partitionings of square duct

Partitioning Elapsed time (h) Speed-up

Serial 104�0 ±
262 19�2 5�4
363 12�1 8�6
464 13�8 7�5
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APPENDIX I: ASYMPTOTIC INVESTIGATION OF STABILITY FOR EXPLICIT SCHEME

The purpose of this appendix is to obtain analytically the stability region for large S. It is proven that

for zero damping coef®cient (R� 0) the stability region approaches the line Cx=Sx� 2. For the

common case (R 6� 0) it is shown that the scheme is stable for Cx=Sx� 2 and Cy=Sy� 2. (We do not

prove that the above limiting values are singular. However, the numerical computations of the

ampli®cation factor for the explicit scheme (see Section 4.2) have not shown another stability region

for large S.)

Firstly we consider the asymptotic behaviour (S!?) of the stability region for the particular case

where the damping coef®cient vanishes (R� 0). In this case the coef®cient C (equation (20)) is zero

and the quadratic equation (19) for the ampli®cation factor G becomes linear, yielding

G � 1ÿ X � Y�
1� Y

2

��
1� Sx ÿ

�
Sx

2
� Cx

4

�
eÿyxi

� : �42�

When Ay� 0, the above expression for G becomes

Gx � 1ÿ X

1� Sx ÿ
�

Sx

2
� Cx

4

�
eÿyxi

�
1

Sx

ÿ 1ÿ
�

1

2
� Re

4

�
eÿyxi � 2cos�yx� ÿ Resin�yx�i

1

Sx

� 1ÿ
�

1

2
� Re

4

�
eÿyxi

�43�

where Re�Cx=Sx is the cell Reynolds number and Gx is the ampli®cation factor for the particular

case Ay� 0.

Neglecting the terms 1=Sx for large Sx and utilizing the condition of stability jGj4 1/* the

following inequality is obtained for the cell Reynolds number Re:

Re2 sin2�yx� ÿ 2Re�1ÿ cos�yx�� ÿ 4 cos�yx��1ÿ cos�yx��4 0; �44�
where 0< yx< 2p. For a given value of yx the roots of inequality (44) are 2 and

ÿ2 cos�yx�=�1� cos�yx�. For cos(yx)� 7 1
2

the roots are equal and a single value (Re� 2) satis®es

inequality (44).

For the case Ay 6� 0 we multiply both sides of (42) by 1� Y=2:

G 1� Y

2

� �
� Gx �

Y

2
1ÿ 2

1� Sx ÿ
�

Sx

2
� Cx

4

�
eÿyxi

0BB@
1CCA: �45�

where Gx was obtained by (43). In this equation the last term vanishes for large Sx. Therefore the

expression in large parentheses tends to unity.

The asymptotic expression for G in the case of large Sx is given by

�Y=s��G ÿ 1� � G � Gx: �46�

*The absolute value of a complex number G� (a� bi)=(c� di) is computed by jGj � ja� bij=jc� dij ����p �a2 � b2�=�c2 � d2��:
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The right-hand side of the above equation does not depend on yy. Therefore the left-hand side

cannot depend on yy either. For the speci®c value yy� 0, Y is close to zero and thus G�Gx for large

Sx. It was shown above that jGxj4 1 for Sx/Cx� 2.

For the common case (R 6� 0) the cell Reynolds number Re� 2 satis®es the stability condition for

large Sx. Actually for Re� 2 the terms R(Cx=47 Sx=2)eyxi in expressions (20) vanish. Therefore the

expression for the ampli®cation factor is exactly the same as (42) and all previous considerations are

valid.

For corner points (boundary points belonging to both the X- and Y internal boundaries) the left-

hand side of equation (14) would be replaced by an analogue of expression (18) for the Y-direction.

The quadratic equation for the ampli®cation factor G has the coef®cients

A � 1� Sy ÿ
Sy

2
� Cy

4

� �
eÿyyi

� �
1� Sx ÿ

Sx

2
� Cx

4

� �
eÿyxi

� �
;

C � ÿR
Cx

4
ÿ Sx

2

� �
eyxi � Cy

4
ÿ Sy

2

� �
eyyi 1� Sx ÿ

Sx

2
� Cx

4

� �
eÿyxi

� �� �
;

B � X � Y ÿ �A� C�:

�47�

The asymptotic stability of a corner point is the same as for a regular boundary point. Under the

condition Cx=Sx � Cy=Sy � 2 the terms R�Cx=4ÿ Sx=2�eyxi and R�Cy=4ÿ Sy=2�eyyi in the above

expressions vanish and C� 0. The expression for G has a very similar pattern to that for a regular

boundary point, except that the term 1� Y=2 is replaced by 1� Sy7 (Sy=2�Cy=4)eÿyyi. However,

for Cy=Sy� 2 these terms are equal. Therefore for Sy!? the proposed scheme is stable at corner

points under the same condition Cx=Sx � Cy=Sy � 2 as at regular boundary points.

APPENDIX II: ASYMPTOTIC INVESTIGATION OF STABILITY FOR SEMI-IMPLICIT

SCHEME

We shall prove that for large S and zero damping coef®cient (R� 0) the numerical scheme is stable if

jRej4 2. For R> 0 we show that the scheme is stable if jRej � 0 or 2.

We prove that for small S and R� 0 the scheme is stable if jRej4 4.

For the case R� 0 the coef®cient C from (25) is equal to zero and the quadratic equation (19)

becomes linear. The expression for the ampli®cation factor G has the form

G � 1ÿ �X � Y ��1� Sx��
1� Y

2

��
1� Sx ÿ

�
Sx

2
� Cx

4

�
eÿyxi

��
1� Sx ÿ

�
Sx

2
ÿ Cx

4

�
eyxi

�
:

�48�

When Ay� 0, expression (48) becomes

G �

�
1

Sx

� 1ÿ
�

1

2
� Re

4

�
eÿyxi

��
1

Sx

� 1ÿ
�

1

2
ÿ Re

4

�
eyxi

�
ÿ 2�1ÿ cos�yx�� ÿ Re sin�yx�

�
1

Sx

� 1

�
i�

1

Sx

� 1ÿ
�

1

2
� Re

4

�
eÿyxi

��
1

Sx

� 1ÿ
�

1

2
ÿ Re

4

�
eyxi

� :

�49�
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For large Sx the terms 1=Sx are negligible, so

G �
ÿ3

4
ÿ
�

Re

4

�2

� cos�yx� ÿ
Re

2
sin�yx�i

5

4
ÿ
�

Re

4

�2

ÿ cos�yx� �
Re

2
sin�yx�i

: �50�

The stability condition jGj < 1 leads to the inequality

Re

2

� �2

ÿ1

" #
�1ÿ cos�yx��4 0; �51�

which is satis®ed when

ÿ24Re4 2: �52�
For the case R> 0 and jRej � 2 the coef®cient C in (25) is equal to zero. Therefore expression (48)

for the ampli®cation factor is valid and according to condition (52) the scheme is stable.

For the case jRej � 0 the coef®cients (25) of the quadratic equation (19) become

A � �1� Sx�2 ÿ
Sx

2

� �2

; C � R
Sx

2

� �2

; B � X ÿ �A� C�; �53�

where X� 4Sx sin2(yx=2).

Only the terms S2
x are taken into consideration in (53) and the above coef®cients are given by

A � 3

4

Sx

2

� �2

; C � R
Sx

2

� �2

; B � ÿ�A� C�: �54�

The roots of equation (19) for the ampli®cation factor are ÿ1 and R=3. For re®nement of the

analysis, Sx is taken into account in (53). The coef®cients A and C are the same as in (54) and the

coef®cient B becomes B�X7 (A�C), where X> 0 for yx> 0. Therefore the amplication factor is

bigger than ÿ1 and the scheme is stable for every ®nite Sx.

The proof that the above asymptotic conditions are valid for the common case Ay 6� 0 is performed

in the same way as for the explicit scheme.

When R� 0 and Ay� 0, the stability condition is obtained analytically for small Sx-values, when

S2
x � Sx, and (48) becomes

G �
1ÿ

�
Cx

4

�2

� Sx cos�y� ÿ Cx

2
sin�y�

�
1� Sx

2

�
i

1ÿ
�

Cx

4

�2

ÿ Sx cos�y� � 2Sx �
Cx

2
sin�y

�
1� Sx

2

�
i

: �55�

The stability condition jGj1 leads to the following inequality for Cx:

1ÿ Cx

4

� �2
" #

2Sx cos�y�4 1ÿ Cx

4

� �2
" #

2Sx�2ÿ cos�y��: �56�

The resulting restriction for the Courant number Cx is

ÿ44Cx 4 4: �57�
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APPENDIX III: LIST OF MAIN SYMBOLS

Ax, Ay differential operators in x- and y-direction respectively

Cx�Udt=Dx Courant number in x-direction

Cy�VDt=Dy Courant number in y-direction

f*, f** intermediate ADI functions

F, f main variables

G ampli®cation factor for error

P, Q ampli®cation factors for f *, f **

Pr Prandtl number

R damping coef®cient

Ra Rayleigh number

S source term

Sx� nDt=Dx2 stability ratio in x-direction

Sy� nDt=Dx2 stability ratio in y-direction

U, V velocity components in x- and y-direction respectively

Greek letters

e error (difference between exact and numerical solutions)

yx, yy phase angles

x vorticity

c streamfunction
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